Dreams: The Process of Awakening

A Physical Interpretation of Dreams

Last Revision: May 27, 2021

By Bruce McKeithan

Introduction

Dreams reflect the brain’s and our own efforts to minimize the disturbing effect of energy within us at various stages of awakening. Let us see how this happens and leads to waking up. We rely on certain principles from physics to do this and defer to others for a physiological exposition of dreams.

First of all, energy that the brain releases at its base flows into the central part of the brain, avoiding excess internal energy or heat at the base. This energy then threatens our equilibrium. We wish to remain undisturbed by the incoming  energy and to counteract it in some way. The brain handles this situation by storing energy among its many cells, reducing the velocity of the associated brainwaves. We can speak of brainwaves because according to quantum physics, which has been around since 1900 as has psychoanalysis, energy is equivalent to the frequency of the waves carrying it. A lower frequency for a given wavelength means a lower velocity of waves.

Once the energy storage reaches, or nearly reaches, a maximum, it reverses itself, constituting a second phase of a dream. We do not welcome this change as it confronts us with disquieting free energy. We see ourselves trying to preserve the first phase’s state by repairing any damage or harm done by the advent of the second phase. We also see ourselves trying to succeed at some activity, an effort to use our energies internally. As the new images frustrate our efforts to remain in the same state and threaten to take over completely, we must find an alternative solution. So we awake.

In a dream we see a great many people or objects, or a very large object. We can account for these images by a formula called the De Broglie relation. Reducing the velocity of brainwaves in the first phase and shortening the length of waves in the second phase both result in a multitude of images. Particularly at the end of a dream there are often very many objects such as trees in a large dense forest. This incites one to wake up. See the Appendix for a detailed discussion of this phenomenon.

In the Beginning

Energy originates at the base, or stem, of the brain. Brainwaves threaten to become too sharp to be sustained in the same place. To alleviate this disturbance, energy flows into the central part of the brain where dreams occur. The new state allows brainwaves to become more elongated and stretched out and momentum to decrease reciprocally. Another, older way of stating this is that energy flows into the interior of the brain to relieve the ensuing pressure.

Thus, we may find ourselves away from home. For example, we may be at a resort, or in the mountains, or in another region of the country, or even in another country. We also may find ourselves back in time: at an earlier home, or at an old school or workplace. In short a displacement in place and/or time occurs. Various happy memories are elicited as a part of the initial relief from excessive agitation and avoidance of a buildup of heat in the lower brain.

Improvement

Because the brain has a limited capacity for expansion, the waves are still quite excited, indicating a certain imput of remaining energy. Because the mind can store this energy, it reduces the velocity of the brainwaves in inverse proportion to the amount of stored energy. The mind deals with electrically charged chemical elements and electrical energy, so that it must reduce any applied electric fields to accomplish this. As a result, waves become more agreeable, or certainly less aggravating.

Devices for storing electrical energy are called capacitors. The brain has various structures that serve this purpose such as the membranes of nerves and the gaps between nerve cells. Making these structures less permeable to the conduction of charged elements decreases the strength of the microscopic electric fields within the brain. We can interpret this physically as a self-regulating increase in the dielectric strength (or charge-resistance) of the material between opposite charges. It provides for an increase in the amount of electric charge which can be stored, something called capacitance.

In addition, we may try to put together something in a cooler, more northern geographical area, one presumably further away from the central part of the brain. This also has the effect of reducing the velocity of waves further.

In physiology, Dr. Clay Armstrong, professor emeritus at the University of Pennsylvania has found that positively charged calcium has a blocking effect within the membranes of nerves cells. In addition, there are antagonistic molecules within the space (or synapse) between neurons. There are also inhibitory neurons in addition to the principal neurons acting on a postsynaptic nerve. While the net effect of the two may determine whether an impulse is propagated further, it must still involve a reduction in the electric field.

Let us also briefly discuss thermodynamics as it pertains to dreams. The release of energy that precedes a dream is called an increase in entropy, or disorder (symbol S). To avoid an increase in pressure, energy flows out of the stem of the brain into the interior of the brain. This presents a new challenge to us in the form of imposed energy that can result in increased heat and temperature. To lessen that impact, the mind must take preemptive action. Two psychiatrists Hobson and McCauley point out in their 1977 paper that dreams are the brain’s effort to make sense of the resulting chaos. Certainly we can expect the mind to regulate the incoming energy in some way.

Thus dreaming is one step in a four-step thermodynamic cycle. It reflects our efforts to control energy before we accede to the fourth step, namely waking where we expend energy.

In a dream, we are able to reduce the velocity of brainwaves creating an increase in mental images. These images are in inverse proportion to the reduction in velocity and in direct proportion to the storage capacitance. The De Broglie quantum physics relation requires this effect (see the Appendix). We may see ourselves up a river at a college where presumably we learn about how to handle the incoming energy.

Toward the end of a dream, the mind may form images of a multitude of people or a great many objects. For example, we may see large crowds or gatherings, or a number of buildings or houses, or a single large building or structure, or a large number of tables or desks in some setting. The objects also have a certain density or alignment which further expresses their ordering (a reduction in S, or entropy). For example, homes are in a line or there is a congregation of people in a church or other assembly, or there is a busload of seated people.

In The End

The large number of aligned images indicates that the storage of energy has reached a maximum. At its limit, the storage begins to dissolve, somewhat like the discharge of a capacitor, but also because there is tension involved. This reduction yields or releases new energy, creating a new set of images in opposition to the previous set. It is like two ships colliding in an ocean of stored energy. The new opposing images are again in accordance with the De Broglie relation which states that mass also increases with a shortening in wavelength, which occurs with an increase in energy at a static velocity (since w = v/f).

At first we try to preserve the results of our older efforts by curing or repairing the damage done by the dissolution. In a dream, we see ourselves wanting to help a sick parent, who in reality has died, or another older relative. It may be an old car, or a coal burning furnace, or an overgrown garden that needs repair and we want to fix.

The situation requires an expansion of energy again in order to prevent an increase in internal energy. This involves or means carrying out activities which expend energy. As we continue to have some resistance to this conversion, we imagine doing things while still asleep, such as even simply counting integers upward.

The inward activity may take the form of sports, but the new energy, as it predominates, greatly frustrates these efforts. For example, in golf there are too many trees, hills or rocks to achieve success. In football, one’s opponent is too strong. In tennis, the court is too large and one’s opponent too good. Other failures can also occur in dreams, such as failing a test at school, failing at a job, and even a plane preparing to make a crash landing. These failures of course say that we cannot remain in the dream (or sleep) state any longer.

We somehow know that pursuing activities externally will bring us back to deep sleep. So we may also internalize the idea of going back home, but again we have trouble We cannot get our clothes together, or there is some obstacle preventing us from starting home. A deep ravine may confront us with a large amount of deadly, kinetic energy, if we fail to awake.

We may also envision the threat of new energy to ourselves in the form of a large waterfall at the end of a large lake (stored energy), or a stream rushing down a hill toward a town, or water rapidly going through a culvert, sweeping one along with it. This may indicate an overload of stored energy and the need to wake up to pursue some activity to reduce the released energy.

As the dissolution nears completion (ending the storage of energy), we become subject to it like being forced to join the army. It is then that we realize that we must at least recognize our basic desires, particularly for food or sex, and identify with them. We may envision satisfying our basic needs and desires within a dream by participating in a related activity internally. But we again become frustrated and  cannot placate our desires and forestall awakening much longer.

Prolonging sleep can engender a dangerous, or severely hostile, situation. Some police or military force, or enemy, may threaten us with execution or death. In these situations, where the instinct is self-preservation, it is of course impossible to stay asleep any longer.

Once the new energy  dominates, we must find an alternative solution to handling it. Consciousness affords us the ability to have objectives and to use our energies.

Conclusion

We go through a process of handling energy internally, and when this fails we wake up. Waking gives us the ability to think and to act appropriately. Descartes in the 17th century said: I think, therefore I am. Existentialism in the 20th century may well have said: I act, therefore I am. Of course, it is their combination which is important. Once awake we commit ourselves to some task, profession, activity, or person in order to expend energy. Waking means that we agree to take such action. How this goes depends on a favorable environment and our own cleverness or wits.

Still how do we reconcile the two points of view: doing nothing versus doing something? The analogy with a spring comes to mind. It is necessary to stretch or to compress a spring, perhaps significantly, before we get a substantial oscillation. In physics this is called a restoring force, which attempts to take us back to our original, resting position and results in harmonic motion. All of the physical analogies amount to the same thing: a buildup of potential energy as a forerunner to kinetic energy which results in activity of one sort or another. Thus, even though we are unaware of it, the handling of or controlling energy internally can be considered a prerequisite to consciousness. It also appears to be a necessary step in life’s thermodynamic cycle.

Whatever conclusions we reach about dreams, it is worth noting that the images, large or manifold, are connected to, or represent, changes in the form of energy (or waves) within the brain. At first we store energy, making it potential and reducing velocity. Secondly as the brain releases this energy, we first try to carry out activities internally, using images of objects and people that we have known in our lives. Ultimately the second phase is too adverse to our efforts to offset it, causing us to awake.

Appendix

De Broglie in his 1924 hypothesis intended to show that particles as well as light beams had wave motion. De Broglie derived his hypothesis from Planck’s formulation in 1900 that energy (E) was equal to Planck’s constant (a very small number represented by the letter h) times the frequency (f) of a radiation’s light wave, in short E = hf. De Broglie translated it as follows:

Because E = mass X velocity squared and f is velocity / wavelength (w), E = hf can be written as mv2 = hv/w, or simply mvw = h. This relation states that that lowering either v or w causes an increase in m. An increase in energy storage decreases v, increasing m. Subsequently, a decrease in storage capacity increases wave motion and frequency, so that w, which is equal to v / f, must decrease in the second phase of a dream. This again produces a great number of images or a very large object in dreams, particularly as a dream progresses.

Perhaps we should note that, in the second phase, velocity (v) would remain roughly the same as before since the wavelength and period (t) decreases by roughly the same percentage, as determined by the presentation of the new energy.

Acknowledgment

Thanks to Dr. John P. Ralston, professor of physics at Kansas University, for helping me during the past several years to understand and appreciate various things about physics and to put these concepts into words. Most college physics books cover this article’s topics in more detail. For information regarding physiology, see the internet or books about the brain.